On solutions of the Yang-Baxter equations without additivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 251395
(http://iopscience.iop.org/0305-4470/25/5/037)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:06

Please note that terms and conditions apply.

COMMENT

On solutions of the Yang-Baxter equations without additivity

Ladislay Hlavatý
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 18040 Prague 8, Czechoslovakia

Received 24 September 1991

Abstract

The relationship is described between solutions found by Ge and Xue and by the present author.

Recently two 4×4 solutions of the Yang-Baxter equations (YBE)

$$
\begin{equation*}
R_{12}(\lambda, \mu) R_{13}(\lambda, \nu) R_{23}(\mu, \nu)=R_{23}(\mu, \nu) R_{13}(\lambda, \nu) R_{12}(\lambda, \mu) \tag{1}
\end{equation*}
$$

were published [1]. The solutions are non-additive in the sense that $R(\lambda, \mu) \neq f(\lambda-\mu)$. The purpose of this comment is to generalize these solutions and describe their relationship to the solutions

$$
\begin{align*}
& R_{\mathrm{V}}(u, v)=\left(\begin{array}{cccc}
u / v & 0 & 0 & 0 \\
0 & (u v)^{-1} & 0 & 0 \\
0 & 1-k & k u v & 0 \\
0 & 0 & 0 & v / u
\end{array}\right) \quad k=\text { constant } \tag{2}\\
& R_{\mathrm{VI}}(u, v)=\left(\begin{array}{cccc}
u_{1} / v_{2} & 0 & 0 & 0 \\
0 & \left(u_{1} v_{2}\right)^{-1} & 0 & 0 \\
0 & W & -u_{1} v_{2} & 0 \\
0 & 0 & 0 & v_{2} / u_{1}
\end{array}\right) \quad W=u_{1} / u_{2}+u_{2} / u_{1} \tag{3}
\end{align*}
$$

that are given in table 1 of [2] together with other non-additive solutions to the ybe. Note that the variables u, v in $R_{\mathrm{VI}_{1}}$ are two-component quantities.

To solve the equation (1) the ansatz

$$
R(\lambda, \mu)=\left(\begin{array}{cccc}
u_{+}(\lambda, \mu) & 0 & 0 & 0 \tag{4}\\
0 & p^{(+-)}(\lambda, \mu) & 0 & 0 \\
0 & W(\lambda, \mu) & p^{(-+)}(\lambda, \mu) & 0 \\
0 & 0 & 0 & u_{-}(\lambda, \mu)
\end{array}\right)
$$

was accepted (for easy orientation we use the notation of [1]). The ansatz can be justified either [1] by weight-conservation or [2] by the requirement that we look for solutions that for $\lambda=\mu$ are of the form

$$
R=q\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{5}\\
0 & r & 0 & 0 \\
0 & 1-r t & t & 0 \\
0 & 0 & 0 & s
\end{array}\right) \quad s=1 \text { or } s=-r t
$$

An important fact exploited in the following is that the set of solutions of (1) is in general invariant under the transformations

$$
\begin{align*}
& R(\lambda, \mu) \mapsto \varphi(\lambda, \mu) R(\lambda, \mu) \tag{6}\\
& R(\lambda, \mu) \mapsto[T(\lambda) \otimes T(\mu)] R(\lambda, \mu)[T(\lambda) \otimes T(\mu)]^{-1} \tag{7}\\
& R(\lambda, \mu) \mapsto R(f(\lambda), f(\mu)) \tag{8}
\end{align*}
$$

where φ and f are scalar functions and T is a $G L(2)$-valued function.
We can exploit the symmetry (6) to set $u_{+}(\lambda, \mu)=1$. Then we immediately get from (1) that $p^{(+-)}, p^{(-+)}$are functions of one variable only

$$
\begin{align*}
& p^{(+-)}(\lambda, \nu)=p^{(+-)}(\lambda, \mu)=p^{+}(\lambda) \tag{9}\\
& p^{(-+)}(\lambda, \nu)=p^{(-+)}(\mu, \nu)=p^{-}(\nu) \tag{10}
\end{align*}
$$

(cf (11), (12) in [1]). For $W(\lambda, \mu)$ we get the equation

$$
\begin{equation*}
W(\lambda, \mu) W(\mu, \nu)=W(\lambda, \nu)\left[1-p^{+}(\mu) p^{-}(\mu)\right] \tag{11}
\end{equation*}
$$

the general solution of which is

$$
\begin{equation*}
W(\lambda, \mu)=\left[1-p^{+}(\lambda) p^{-}(\lambda)\right] \xi(\lambda) / \xi(\mu) \tag{12}
\end{equation*}
$$

where ξ is an arbitrary function. The equations for $u_{-}(\lambda, \mu)$ then imply that

$$
\begin{equation*}
u_{-}(\lambda, \mu)=p^{+}(\lambda) q(\mu) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
q(\mu)=1 / p^{+}(\mu) \quad p^{+}(\mu) p^{-}(\mu)=k \in \mathbb{C} \backslash\{0\} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
q(\mu)=-p^{-}(\mu) \tag{15}
\end{equation*}
$$

The conclusion is that there are just two solutions to the ybe (1) of the form (4). They are

$$
\begin{array}{r}
R_{1}(\lambda, \mu)=\varphi(\lambda, \mu)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & p^{+}(\lambda) & 0 & 0 \\
0 & (1-k) \xi(\lambda) / \xi(\mu) & k / p^{+}(\mu) & 0 \\
0 & 0 & 0 & p^{+}(\lambda) / p^{+}(\mu)
\end{array}\right) \\
R_{2}(\lambda, \mu)=\varphi(\lambda, \mu)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & p^{+}(\lambda) & 0 & 0 \\
0 & W(\lambda, \mu) & p^{-}(\mu) & 0 \\
0 & 0 & 0 & -p^{+}(\lambda) p^{-}(\mu)
\end{array}\right) \tag{17}
\end{array}
$$

where W is given by (12) and p^{+}, p^{-}, φ and ξ are arbitrary functions.
The solutios in [1] are particular cases of (16), (17) where

$$
\begin{array}{ll}
p^{+}(\lambda)=q^{-1} \eta Q^{\Sigma_{j=1}^{\prime \prime \prime} \dot{x}_{i} \lambda^{\prime}} & p^{-}(\mu)=q^{-2} / p^{+}(\mu) \\
\varphi(\lambda, \mu)=q \varphi_{+}(\lambda, \mu) & \xi(\lambda)=g(\lambda) \quad k=q^{-2} \tag{19}
\end{array}
$$

The appearance of functions φ and ξ in (16), (17) is a consequence of the symmetries (6), (7). The symmetry (8) enables to consider $p^{ \pm}(\lambda)$ and $p^{ \pm}(\mu)$ as independent variables of the solutions. This attitude was accepted in [2]. Namely, denoting $p^{+}(\lambda)=u^{-2}$, $p^{+}(\mu)=v^{-2}$ and choosing $\varphi(\lambda, \mu)=u / v, \xi(\lambda)=u^{-1}, \xi(\mu)=v^{-1}$ we get $R_{1}(\lambda, \mu)=$ $R_{\mathrm{v}}(u, v)$. Similarly, denoting $p^{+}(\lambda)=u_{1}^{-2}, p^{-}(\lambda)=-u_{2}^{2}, p^{+}(\mu)=v_{1}^{-2}, p^{-}(\mu)=-v_{2}^{2}$ and choosing $\varphi(\lambda, \mu)=u_{1} / v_{2}, \xi(\lambda)=u_{2}^{-1}, \xi(\mu)=v_{2}^{-1}$ we get $R_{2}(\lambda, \mu)=R_{\mathrm{V}_{1}}(u, v)$.

References

[1] Ge M L and Xue K 1991 J. Phys. A: Math. Gen. 24 L895
[2] Hlavatý L 1987 J. Phys. A: Math. Gen. 201661

